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Abstract
We propose an algorithm which proves a given bipartite quantum state to be
separable in a finite number of steps. Our approach is based on the search
for a decomposition via a countable subset of product states, which is dense
within all product states. Performing our algorithm simultaneously with the
algorithm by Doherty, Parrilo and Spedalieri (which proves a quantum state
to be entangled in a finite number of steps) leads to a two-way algorithm that
terminates for any input state. Only for a set of arbitrary small measure near
the border between separable and entangled states is the result inconclusive.

PACS numbers: 03.67.−a, 03.65.Ud

The question of whether a given quantum state is entangled or separable is both of fundamental
interest, and of relevance for the implementation of quantum information processing tasks.
The separability problem has stimulated many ideas for partial solutions: a sufficient condition
for separability is given by the vicinity of the state to the identity [1–3]. A necessary condition
for separability of a given state is that it fulfils the criterion of the positive partial transpose
(PPT) [4]. Entanglement witnesses provide sufficient criteria for entanglement [5]. However,
the separability problem has been shown in [6] to be in the complexity class NP-hard, and no
complete solution is known yet. An improved algorithm for the separability problem, based on
entanglement witnesses, was recently proposed in [7]. In this paper, we suggest an algorithm
that extends and complements the recent algorithm by Doherty, Parrilo and Spedalieri [8].

The separability problem is defined as follows. A quantum state ρ which acts on a
bipartite, finite-dimensional Hilbert space HA ⊗ HB is separable iff there exist a set of pure
product states |ei〉〈ei | ⊗ |fi〉〈fi |, and a set of real positive numbers pi with

∑
i pi = 1, such

that ρ = ∑
i pi |ei〉〈ei | ⊗ |fi〉〈fi | [9]. This property can be reformulated such that ρ has to lie

within the convex hull of some pure product states. Furthermore, it is known that a separable
ρ is in the convex hull of at most L := (dimHA dimHB)2 pure product states [10]. So it
remains to show whether for a given ρ there exist L (not necessarily pairwise different) pure
product states, such that ρ is in their convex hull. However, searching for these L states in the
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set of all quantum states would mean searching through a set of infinitely many uncountable
states.

One of the most advanced solutions to the separability problem was recently introduced
by Doherty, Parrilo and Spedalieri in [8]. They presented an iterative algorithm (denoted as
A1 in the remainder of this text), which is based on symmetric extensions of a given quantum
state, such that this algorithm terminates after a finite number of iterations iff the state is
entangled. However, if the state is separable, the algorithm A1 does not terminate. From an
algorithm-theoretic point of view this is not satisfactory: not having terminated after a finite
time does not yield any information about the properties of the state.

We suggest an algorithm which provides a solution for this problem and closes the gap in
the above algorithm, because it detects a given separable state after a finite number of steps.
Applied in parallel with the algorithm in [8], the combined algorithm then terminates after
a finite time: one of the two tests certainly terminates, as every state is either entangled or
separable. Our main idea is that it is sufficient to restrict ourselves to a countable subset of
pure states, rather than searching through all (uncountable) pure states.

Let us start by providing the mathematical background. For each separable state ρ

there exists by definition a decomposition ρ = ∑L
i=1 pi |ei〉〈ei | ⊗ |fi〉〈fi |, with pi � 0 and∑

i pi = 1. A central idea of our approach is that the probabilities pi are not needed
for deciding whether a state is separable or not—only the pure states {|ei〉, |fi〉} in the
decomposition are essential. Thus we can rephrase the separability definition in the following
way: a state ρ is separable, iff there exists a set of projectors onto separable pure states
c := {|e1〉〈e1| ⊗ |f1〉〈f1|, . . . , |eL〉〈eL| ⊗ |fL〉〈fL|}, such that ρ lies in the convex hull of the
elements of c. However, a straightforward search through all sets containing L pure product
states—while easily parametrized—is impossible, as there are not only infinitely many such
sets, but they are even uncountable.

We will show in the following that it is (in the generic case) enough to restrict oneself
to a countable subset C of all L-tuples of pure product states, which is dense within all pure
product states. Within a countable set C there exists by definition a sequence {ci} in C that
covers C completely. Thus it is possible to formulate an iterative algorithm that passes all
L-tuples of pure product states in C in the limit of infinitely many steps. Furthermore, one can
use the well-known feature that for every element c in C there exists a finite number i such that
the value ci at the ith step of the sequence equals c. Therefore for a given (generic) separable
ρ the iterative algorithm: check whether ρ is in the convex hull of the L-tuple ci terminates
after a finite time.

Let us put the mentioned ideas on mathematical grounds and first prove the statement
that it is sufficient to search within a dense subset. Although some of the arguments
given below hold for general convex sets, we will restrict ourselves here and in the
following to sets of operators (‘states’) acting on a finite-dimensional Hilbert space, where
we use the Hilbert–Schmidt norm. The distance between two vectors from the Hilbert
space is given by d(|ψ〉, |φ〉) = √

(〈ψ | − 〈φ|)(|ψ〉 − |φ〉), and between two operators
d(a, b) =

√
Tr[(a† − b†)(a − b)].

Definition 1. A subset B ⊂ A is called dense in A if every a ∈ A can be written as the limit
of a sequence {bn} in B.

Let us summarize some facts about convex sets:
1. A set X is convex if for any finite number l, any a1, . . . , al ∈ X, and all λi � 0 with∑

i λi = 1, the sum
∑l

i=1 λiai ∈ X.
2. The convex hull of a set X is the smallest convex set that contains X. The convex hull of the
set X will be denoted as conv X.
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3. For a convex set X we will denote the border δX as all points a ∈ X for which ∃ b ∈ X

such that for all η > 0 the point (1 + η)a − ηb does not belong to X.

Lemma 1. Let A = cl A (where cl A denotes the closure of A) be the set of extremal points
of a convex set X, and B ⊂ A be a dense subset of these extremal points, then the convex hull
of B is dense within the convex hull of A.

Proof. We want to prove that conv A = cl conv B, so we have to show both inclusions.
‘⊂’: suppose one has x ∈ conv A then there exists by definition a set of elements ai in A

and λi > 0 with
∑

i λi = 1, such that x = ∑r
i=1 λiai . Since B is dense in A there exists for

every ai a sequence {bi,j } in B such that the limit j �→ ∞ of this sequence is ai . Due to the
additivity of the limit x is in the closure of conv B.

‘⊃’: if A is closed then conv A is also closed, and contains conv B. But cl conv B is the
smallest closed set that contains conv B, so cl conv B ⊂ conv A. �

Lemma 2. Given a convex set X within the set of states, with the finite set of extremal points
a1, a2, . . . , al and a point x that is in the interior of X. Then there is an ε > 0 such that for all
points a′ with d(a1, a

′) < ε the point x is also in the interior of the convex hull of the points
a′, a2, . . . , al .

Proof. A ‘face’ of a convex set with dimension D is a subset of the border, which is the
convex hull of D affinely independent elements. Since x is in the interior of conv{a1, . . . , al},
there is an ε > 0 such that all points y in X for which d(x, y) < ε are not on the border of X.
In other words, x is not in an ε-surrounding of the border. We note now that changing a1 to a′

only affects those faces that have a1 as one of the affinely independent extremal points. When
a′ is taken such that d(a1, a

′) < ε, the involved faces will remain in an ε-surrounding of the
faces of the original set of extremal points. Therefore the point x remains in the interior of the
new convex set. �

Theorem 1. Given two convex sets B ⊂ A, such that B is dense within A, then all points in
the interior of A are in the interior of B.

Proof. Consider an arbitrary point a in the interior of A. Then ∃ ε > 0 s.t. all points
with a distance smaller than 2ε from a are in A. Let us choose 2l points defined by
xi = a + εβi, xl+i = a − εβi , with i = 1, . . . , l, where {β1, . . . , βl} is an orthonormal
basis in our space. Each of these points has the distance ε from a, and is therefore in A. The
convex hull of these 2l extremal points is a ‘generalized diamond’, i.e. a regular crosspolytope
(see figure 1), and a has the distance

√
lε > 0 from any face of this diamond. Using

lemma 2, we can shift one extremal point of the diamond after the other, such that the shifted
points are in B (as B is dense in A), while keeping a in the interior of the new diamond. As all
new extremal points belong to B, a is in the interior of B. �

Let us apply these general properties of convex sets to the problem of proving the
separability of a given ρ. We will parametrize a countable subset of pure product vectors
that is dense within all pure product vectors, and show that this leads to a dense subset of
corresponding one-dimensional projectors. Here, we have to distinguish the cases where ρ

has full rank, or does not have full rank.
We first study the case that ρ has full rank. The set of all pure product vectors is

parametrized by fixing an orthonormal basis {|1〉A, . . . , |n〉A} in HA, where dimHA = n,
and an orthonormal basis {|1〉B, . . . , |m〉B} in HB , where dimHB = m. Then every pure
product state can be written as |ψ〉 = |a〉 ⊗ |b〉 = (∑

i λi |i〉A
) ⊗ (∑

j µj |j 〉B
)
, where
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Figure 1. Constructing a ‘generalized diamond’, i.e. a regular crosspolytope.

∑
i |λi |2 = 1 and

∑
j |µj |2 = 1. So the pure separable states are parametrized by the set

G = {λ1, . . . , λn, µ1, . . . , µm| ∑i |λi |2 = 1,
∑

j |µj |2 = 1} of n + m complex coefficients
with the two normalization constraints.

We now restrict the coefficients to complex quantities expressed with rational numbers
Q. Note that the rational numbers are a countable set and dense in the set of real numbers
R. However, due to the normalization constraint we cannot simply consider the subset of G
where all coefficients are of the form p

q
+ i r

s
(where p, q, r and s are natural numbers). We

solve this problem by embedding the normalization constraints explicitly, choosing the subset

G̃ =




λj = pj

qj
e

2π i
rj

sj

λn =
√

1 −
n−1∑
l=1

p2
l

q2
l

e2π i rn
sn

µk = pn+k

qn+k

e2π i rn+k
sn+k

µm =
√

1 −
m−1∑
l=1

p2
n+l

q2
n+l

e2π i rn+m
sn+m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 � j � n − 1

pi, qi, ri, si ∈ N0

pi � qi, ri � si

1 � k � m − 1




.

The subset G̃ is dense within G, since for every element g = (λ′
1, . . . , µ

′
m) in G there is an

element g̃ = (λ1, . . . , µm) in G̃ that is arbitrarily close to g, when the distance is defined as
d(g, g̃) = √

(λ′
1 − λ1)2 + · · · + (µ′

m − µm)2. Furthermore G̃ is countable, since it is a subset
of Q×2(n+m−1).

Obviously the product vectors parametrized by G̃ are dense within all product vectors in
the Hilbert space, since the distance d(g, g̃) is equal to the distance induced by the Hilbert–
Schmidt norm.

Lemma 3. If a sequence of normalized vectors |ψi〉 converges towards |φ〉, then the
corresponding projectors |ψi〉〈ψi | converge towards the projector |φ〉〈φ|.
Proof. The distance between |ψi〉 and |φ〉 is d(|ψi〉, |φ〉) = √

2(1 − Re[〈ψi |φ〉]), where we
denote by Re[〈ψi |φ〉] the real part of the scalar product. Since the |ψi〉 are converging towards
|φ〉, for every ε > 0 there exists an i0 such that for all i > i0 the distance d < ε. This implies
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that Re[〈ψi |φ〉] > 1 − ε2/2. The distance of the corresponding operators is calculated as

d(|ψi〉〈ψi |, |φ〉〈φ|) =
√

2(1 − |〈ψi |φ〉|2)
�

√
2(1 − (Re[〈ψi |φ〉])2) � ε

√
2 − ε/2. (1)

Thus |ψi〉〈ψi | converges towards |φ〉〈φ|. �

We now study the case that ρ does not have full rank. Since the states with lower rank
form the border of all states, they will not necessarily be in the convex hull of the previously
defined countable set. Thus we have to define the set G̃ in a different way.

Let r be the rank of ρ. We restrict ourselves to the (r2−1)-dimensional space of Hermitian
operators with trace 1 that are supported at most on the range of ρ. Therefore the maximal
number of extremal points needed to find a separable decomposition is given by L := r2. We
know that ρ is in the interior of the space spanned by the projectors whose corresponding
vectors are in the range of ρ. Thus, in the case of less than maximal rank we do not have
to check whether ρ is in the convex hull of all separable pure states, but whether ρ is in the
convex hull of all product projectors, whose vectors are in its range. Note that the existence of
‘enough’ product vectors in the range is a necessary, but not sufficient criterion for separability,
since any state of full rank has all pure states in its range, independently of its separability
property.

Given a state ρ and its spectral decomposition ρ = ∑r
i=1 pi |φi〉〈φi |, a vector |ψ〉 in

the range of ρ can be written as |ψ〉 = ∑r
i=1 λi |φi〉, with complex coefficients λi and∑r

i=1 |λi |2 = 1. A pure bi-partite state |ψ〉 is separable iff TrA(TrB |ψ〉〈ψ |)2 = 1. Therefore
the coefficients for all pure product states in the range of ρ are the roots of a polynomial
of fourth order. These roots can be obtained numerically. The conditions for the λi are
summarized as follows:

1. λi ∈ C ⇔ λi = e2π iθi |λi |
2.

∑r
i=1 |λi |2 = 1 ⇔ |λr | =

√
1 − ∑r−1

i=1 |λi |2
3. TrA(TrB |ψ〉〈ψ |)2 − 1 = 0, i.e.

n∑
j,j ′=1

m∑
i,i ′=1

r∑
l,k=1

r∑
l′,k′=1

λlλ
∗
kλl′λ

∗
k′ 〈jAiB |φl〉〈φk|j ′

AiB〉 · 〈j ′
Ai ′B |φl′ 〉〈φk′ |jAi ′B〉 − 1 = 0. (2)

We parametrize the product vectors in the range of ρ by 2r − 2 real parameters. Now
we once again construct a dense subset of these parameters by choosing rationals in the form

λi = pi

qi
e2π i ri

qi , where pi, qi, ri, si ∈ N and pi < qi, ri < si . As previously, this subset is
dense in all product vectors and therefore dense in the corresponding projectors. Furthermore
it is countable, due to the countability of the rationals.

Having found a countable subset that is dense in all product states, this immediately leads
to a countable subset C of L-tuples of product states: each fixed L-tuple ci can be provided with
a ‘finite address’ i. We can restrict ourselves to tuples with affinely independent elements: an
affinely dependent set can be reduced to an affinely independent subset. For a decomposition
with less than L product states, one can extend the corresponding tuple to an L-tuple by adding
affinely independent entries. Obviously the state is still in the convex hull of the extended
tuple, and will be detected as separable at its ‘address’.

Our arguments lead to an algorithm for the detection of a separable state, in the following
denoted as A2: one walks step by step through the countable set of L-tuples C. The ith element
of C is ci = {

τ
(i)
1 , . . . , τ

(i)
L

}
. One checks if the

{
τ

(i)
1 , . . . , τ

(i)
L

}
are affinely independent, and if

they are not, one moves to the next element, i.e. �→ i +1. If the elements of ci are independent,
one checks whether ρ belongs to conv

{
τ

(i)
1 , . . . , τ

(i)
L

}
.
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The check whether ρ is in conv
{
τ

(i)
1 , . . . , τ

(i)
L

}
is performed as follows: one chooses L−1

different elements out of the L given ones, and finds the normal ξn to the hyperplane defined
by these elements. The state ρ is on the ‘same side’ of the hyperplane as the remaining point,
if sign(Tr[ξnρ]) = sign(Tr[ξn(τr − τh)]), where τr is the remaining point, and τh is a point
in the hyperplane. If the two signs are different (i.e. ρ and the remaining element are ‘on
different sides’), then ρ does not belong to conv

{
τ

(i)
1 , . . . , τ

(i)
L

}
. This test is performed L times

for all possible choices of L − 1 elements from ci . If ρ is in each case on the same side as
the remaining point, then ρ is in conv

{
τ

(i)
1 , . . . , τ

(i)
L

}
, and therefore separable. In this case the

algorithm terminates. Otherwise one continues with the next step, i.e. i �→ i + 1.
Combining the two algorithms A1 and A2 by running them in parallel (in an iterative

way) is already a big improvement over A1, since the combined algorithm terminates after a
finite time for all input states that are entangled and all input states that are in the interior of
the separable states. This leaves a set at the border between separable and entangled states,
where the combined algorithm cannot be trusted to terminate after a finite time. This problem
can be solved as follows.

A state ρ on the border between separable and entangled states has the property that for
all 0 < η < 1 the operator ρe = (1 + η)ρ − η 1 does not belong to the separable states [11].
Due to convexity the operator ρs = (1 − η)ρ + η 1 is separable. If for all η > 0 the operator
ρe is non-positive, then ρ is not of full rank—a case that we already studied above. Thus, the
only possibility for a state to be on the border between separable and entangled states is that
∃ η0 > 0 s.t. ∀ η < η0 the state ρe is positive. Note that until today there is no algorithm known
for the decision whether a state is on the border between separable and entangled states: if
this border were known completely the separability problem would be solved.

The above property can be used for closing the termination gap in the combined algorithm
described above, by extending it in the following way to the final algorithm A: take some
small, but fixed η > 0, such that (1 +η)ρ −η 1 is a positive operator. Then set two flags f1, f2

to FALSE. These are global flags and are not changed at any step of the algorithm, unless
mentioned explicitly. In the ith step of the algorithm:
(1) do the ith step of A1 for ρ,
(2) do the ith step of A2 for ρ,
(3) do the ith step of A1 for the state (1 + η)ρ − η 1,
(4) do the ith step of A2 for the state (1 − η)ρ + η 1.
If A1 detects (1 + η)ρ − η 1 in (3), set f1 to TRUE (from this point on it will stay TRUE). If
A2 detects (1 − η)ρ + η 1 in (4), set f2 to TRUE (from this point on it will stay TRUE).

The termination criteria for A are given as:
(a) If the A1 test detects ρ in (1), then ρ is entangled and A terminates.
(b) If the A2 test detects ρ in (2), then ρ is separable and A terminates.
(c) If both f1 and f2 are TRUE, then the state is in the η-surrounding of the border between
separable and entangled states, and A terminates with this information.

Otherwise do the step i �→ i + 1.
This algorithm terminates after a finite time for any initial state. Here, the outcome

(c) does not give any information about the state being separable or entangled, but just the
knowledge that the state is ‘close’ to the border. However, we point out that the surrounding
of the border which leads to an inconclusive outcome can, in principle, be made arbitrarily
small.

In summary, we have presented an algorithm for the separability problem, which
complements the algorithm of Doherty, Parrilo and Spedalieri. Their algorithm detects an
entangled state after a finite number of steps, but does not terminate for separable states. Our
algorithm, on the other hand, detects a separable state after a finite number of steps, but does
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not terminate for an entangled state. The connection of the two algorithms terminates for all
input states. In the case of the initial state being close to the border between separable and
entangled states, our algorithm terminates with an inconclusive output.
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